leetcode7_回溯组合

理论基础
什么是回溯法
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。
回溯是递归的副产品,只要有递归就会有回溯。
所以以下讲解中,回溯函数也就是递归函数,指的都是一个函数。
回溯法的效率
回溯法的性能如何呢,这里要和大家说清楚了,虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。
因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。
回溯法解决的问题
回溯法,一般可以解决如下几种问题:
组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式
棋盘问题:N皇后,解数独等等
相信大家看着这些之后会发现,每个问题,都不简单!
另外,会有一些同学可能分不清什么是组合,什么是排列?
组合是不强调元素顺序的,排列是强调元素顺序。
例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。
记住组合无序,排列有序,就可以了。
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构。
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
回溯法模板
- 回溯函数模板返回值以及参数
回溯算法中函数返回值一般为void。
回溯算法的参数可不像递归的时候那么容易一次性确定下来,所以一般先写逻辑,需要什么参数,就填什么参数。
void backtracking(参数)
- 回溯函数终止条件
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了(找到了最细分的一种情况),也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
所以回溯函数终止条件伪代码如下:
if (终止条件) {
存放结果;
return;
}
- 回溯搜索的遍历过程
在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
如图:
注意图中,我特意举例集合大小和孩子的数量是相等的!
回溯函数遍历过程伪代码如下:
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。
backtracking这里自己调用自己,实现递归。
大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。
分析完过程,回溯算法模板框架如下:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
组合问题
回溯法的魅力,用递归控制for循环嵌套的数量!
本题我把回溯问题抽象为树形结构,可以直观的看出其搜索的过程:for循环横向遍历,递归纵向遍历,回溯不断调整结果集。
剪枝精髓是:for循环在寻找起点的时候要有一个范围,如果这个起点到集合终止之间的元素已经不够 题目要求的k个元素了,就没有必要搜索了。
40 组合总和II(考验去重)
给定一个候选人编号的集合 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的每个数字在每个组合中只能使用 一次 。
**注意:**解集不能包含重复的组合。
#include <algorithm>
#include <vector>
using namespace std;
// @lc code=start
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
vector<bool> used;
int size;
void dfs(vector<int> &candidates, int target, int index) {
if (target == 0) {
res.push_back(path);
return;
}
if (target < 0) {
return;
}
for (int i = index; i < size; i++) {
//去重集合,同一树层的重复元素只取一个,这里是关键,递归到下层可以重复使用
if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == true) {
//防止多个重复元素,只取一个
used[i] = true;
continue;
}
//递归下层时不用设置used,因为下一树层可以重复使用不同位置的相同数字
path.push_back(candidates[i]);
//与题目39对比,只需要在这里改一下,i变成i+1,不允许重复,但另一方面,要求去除重复的组合
dfs(candidates, target - candidates[i], i + 1);
path.pop_back();
//本层中的每次循环都要设置true,因为同一树层中不能重复使用相同数字,不然会有重复的组合
used[i] = true;
}
//本层结束应该还原状态,将used[i]重新置为false
fill(used.begin(), used.end(), false);
return;
}
vector<vector<int>> combinationSum2(vector<int> &candidates, int target) {
sort(candidates.begin(), candidates.end());
size = candidates.size();
// resize的使用,初始化为false
used.resize(size, false);
dfs(candidates, target, 0);
return res;
}
};